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High-field expansions for multi-state lattice models 
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Received 25 July 1974, in final form 24 October 1974 

Abstract. High-field expansions are obtained for general three-state models on the face- 
centred cubic lattice. I t  is then shown that the method of partial generating functions can 
be extended to give series expansions for general multi-state models, such as the Potts models 
and the general spin king models. 

1. Introduction 

In this paper we discuss methods of deriving high-field (low-temperature) expansions 
for general multi-state lattice models. The models we consider can be described in the 
following way. 

(i) At each site there is a variable that can be in any one of a finite number of states. 
(ii) The total energy of any configuration depends on the total number of sites in 

each state and the total number of nearest-neighbour pairs in each of the possible 
combinations of states. 

Three-state models of this type have been applied to a variety of physical systems 
such as 3He-4He and dilute magnets (references to this are given in 9 2). Higher-state 
systems include the general spin Ising model and the various Potts models (Potts 1952). 
In 5 5 we consider the two-layer lattice of Ising spin 4 as a single-layer four-state system. 
This enables us to obtain expansions for two-layer systems from existing combinatorial 
data on two-dimensional systems and, by relaxing conditions (ii) above slightly, to 
apply the method of partial generating functions to a system with four-spin interactions. 

The basic technique for obtaining high-field expansions directly has been described 
by Domb (1960). The expansion is a perturbation expansion about a fully aligned state 
and one considers increasing numbers of perturbed sites. Domb provides graphs and 
lattice constants which enable one to obtain the contributions for up to five perturbed 
sites. These combinatorial data can be used in multi-state systems such as the Potts 
model (Enting 1974a) and the general three-state model discussed in 5 3, but it is necessary 
to know the adjacency matrices of the graphs used. For loose-packed lattices 9 4 shows 
how we can extend the method of partial generating functions (Sykes et al 1965) and, 
once we have identified a shadow lattice, we can obtain series expansions for any 
model of the type described above for up to five perturbed sites by means of algebraic 
manipulation without detailed lattice combinatorial information. Higher-order pertur- 
bation terms do need information on the combinatorial properties of the lattice, but 
what we present in this work is a way of expressing the combinatorial information so 
that series expansions for any multi-state model can be obtained by algebraic manipula- 
tion. 
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728 I G Enting 

The layout of the paper is as follows. Section 2 describes the three-state model and 
various applications that have been made. I t  illustrates some of the general properties 
of such multi-state models and the various relations between different models. Section 3 
describes direct expansions for these models. The most important point is that since all 
the states are essentially equivalent, in that any labelling of the states is arbitrary, we 
can make use of this equivalence to reduce the number of series terms that need be given. 
This procedure of giving a small number of terms from which all others can be derived 
by symmetry enables us to  extend the method of partial generating functions to arbitrary 
numbers of states in $4.  Section 5 describes a number of particular multi-state models 
to which these methods apply. In the appendix we give high-field polynomials for the 
general three-state model on the fcc lattice. For most other lattices we can use the method 
of partial generating functions for which general 'codes' are given in 5 4 and the appendix. 
(The triangular lattice is excluded. I t  can be treated by a decomposition into three 
sublattices : this will be considered elsewhere.) 

2. Three-state systems 

There have been a number of models considered in which a lattice has sites which may 
be in any one of three states. The most obvious example is the spin 1 Ising model in 
which the states are the three possible S' components of a spin of magnitude one. With a 
suitable choice of interaction any three-state model may be expressed as a spin 1 Ising 
system as shown below. Some of the systems which can be represented by three-state 
models are quenched dilute spin 4 magnets (Katsura and Tsujiyama 1966) and 3He-4He 
mixtures (Blume et al 1971). 

Following the basic assumption given in the introduction that the energy depends 
only upon the number of sites in each state and the number of different types of pairs, 
we put 

where we have denoted the three different states a, b, c. For comparison with the spin 1 
representations given below we represent the interactions in terms of a matrix A i j  so 
that 

E = C N i j A i j  
ci.n 

where the sum is over the six pairs (a ,  a), (b, b), (c ,  c), (a ,  b), (a ,  c), (b, c). 

numbers of bonds by 
The existence of the matrix A i j  depends upon the ability to relate N , ,  N b  to the 

where z is the lattice coordination number. While we use the relations (3a). (3b) to show 
that A i j  exists, the more important use is to eliminate N,,, N, ,  from (1). We also put 

(4) h 3 - c 6 - o  - -  - 

which corresponds to choosing a fully aligned c state as having the zero of energy. 
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We can then write E in the form 

E = h l N ,  + h 2 N b  + clN,,+ c2Nbb+ c3Nab .  ( 5 )  

This is the form of the linkage rule used by Sykes and Gaunt (1973) and corresponds to 
an Aij  matrix 

c a b 

Ai ,  = a z - ' h ,  2 z - ' h l + c l  z - ' ( h 1 + h 2 ) + c 3  . 

b I z - ' h ,  O z - ' ( h l + h 2 ) + c 3  2 z - ' h 2 + c ,  

( 6 )  : z - ' h l  z - ' h ,  

We now interpret the c, a, b as the 1.0, - 1 S' values of a spin 1 Ising system and give a 
list of the Aij  matrices for various interactions : 

si+sj= L' 0 - 1 j  

0 -1  - 2  

0 

s;s; = ; ;; 
I 0 0 - 2  

2 0 0  

SiS,(S,+Sj) = 0 0 0 

and a 'constant' matrix with all elements equal. 
Since the six independent components of each of these matrices correspond to  six 

linearly independent six-dimensional vectors, any symmetric 3 x 3 matrix can be 
expressed as a sum of these interactions. (It is also possible to  consider Aij that are not 
symmetric, but this implies an interaction that depends on the direction of the bond. 
Additional linearly independent matrices correspond to  Si- S j ,  Sz - Sf, SiSj(Si - S j ) .  
A model in which this asymmetry occurs has been considered by Bell and Lavis (1970) 
and will be investigated elsewhere.) 

In terms of the 'linkage rules' the interactions become : 
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These linkage rules correspond to summing Si,  S' interactions over all sites while the 
other interactions are summed over all bonds. In contrast the use of matrix A i j  includes 
the S i ,  Sz terms in the sum over all bonds and so the contributions must be divided by z 
as in equation (6). 

The linkage rules (7a-e) are based on the correspondence (c. a, b)  + (1, 0, - 1). If the 
ground state has S' = 0 then the mapping (c, a, b) -+ (0, 1, - 1) gives the linkage rules 

sz + N , + N b .  ( 8 4  
The following models are particular systems for which these linkage rules can be used. 

2.1. Spin 1 Ising model 

The linkage rule has been given by Sykes and Gaunt (1973). The interaction - J S i S j  
gives 

E = J(ZN, + 2ZNb - N,,  - 2N,b- 4Nbb). (9) 

The field term - H S ,  gives 

E, = H(Na+2Nb)  

so that in the notation of ( 5 ) :  

h ,  = H + J z ,  h,  = 2 H + 2 J 2 ,  c1 = - J .  ~2 = - 2 5 .  

2.2. 3He-4He model (Blume-Capel model) 

Blume et a1 (1971) added a AS; term to the spin 1 Ising model to represent a chemical 
potential A in the 3He-4He model. The energy change is 

E ,  = - A N a  (1 1) 

so that h,  , c1, c,, c3 are unchanged but 

h ,  = H + J z - A .  

For A > zJ the S" = 
appropriate to expand about S" = 0. 

1 states are no longer the ground states in zero field and it is 

Using (8a-e) the linkage rule gives 

E = A(Na + Nb) - J(N, ,  - Nab 4- Nbb) 
or 

h ,  = A,  h,  = A, ~1 = - J .  ~2 = - J ,  c 3  = J .  
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This can be used to  interpret the series in the appendix. interpreted by means of (16). 
(17a-e) to obtain large-A expansions. High-temperature expansions for this model 
have been obtained by Oitmaa (1971, 1972) and by Saul et al(1974), who also obtained 
high-field (large H) expansions. They were able to undertake an extensive analysis of 
the tricritical region. Their polynomials can be obtained from those in the appendix by 
making the transformation U + U-’, w + U-,, U + u - ~ .  To obtain the full set given by 
Saul et al it is necessary to use relations (19) and (20) so that their L,, polynomials 
correspond to the spin 3 Ising polynomials given by Sykes et al(1965). The index system 
used by the former corresponds to (2Na+ N,, N,) rather than (No, NJ. 

A generalization of the Blume-Cape1 model has been given by Ditzian (1974) who 
included a term S:S:. She used the same index system as Saul et al. Her series can be 
obtained from those in the appendix by making the transformation 

u + u - l  1’ - 1  9 U’+ U - 2 ,  U + 

This model includes the three-state Potts model as a special case (see equation (15)). 
but comparison of her series with those of Enting (1974a) shows that it is more efficient 
to consider the Potts model directly. The series grouping used by Ditzian suppresses 
some of the information that is potentially available. 

2.3. Three-state Potts model 

The symmetric form of the linkage rule for the three-state Potts model (Potts 1952) has 
the form 

E = J(Nob + + Nbc) (1 3 )  

which becomes 

E = J(zNO + zN, - 2NO0 - 2Nbb - Nab); (14) 

this corresponds to 

- iJSiSj - JSzSf + JzS:, (15) 

the form used by Ditzian and Oitmaa (1974). 
For the Potts model the ordering fields used by Enting (1974a) were 

--F;1S? + hlNa, 

ih,(Si - S f )  --* h2Nb 

and the combination 

-$h(Si+S?) + h(N,+N,). 

Ditzian and Oitmaa used - H S , .  
A check on the expansions is obtained by interpreting the series in the appendix by 

h,  = h 1 + z J ,  h, = h2 + z J ,  ~1 = -25, ~2 = -2J. c 3 =  - J  

and comparing the series to that given by Enting (1974a). 
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3. Series expansion for the three-state model 

The series expansions that we consider will be perturbation expansions about a fully 
aligned c state and are obtained by considering successively larger numbers of perturbed 
sites. For each perturbation we add to the configurational partition function A a 
Boltzmann factor exp( - PE'). 

Using 

E' = ~ , ~ , + ~ , N , + c , N , , , + c ~ N ~ ~ + c ~ N , ~  

we expand as 

U = exp( - /IC,) (174 

L,,(U, c, w )  = L,,(c, U ,  w) 

LmO(U, t', w) = Um*'2Lm(U- 1) 

(19) 

and 

(20) 
where the L,  are the high-field polynomials for the spin 3 Ising model and are given by 
Sykes et a1 (1965). Other L,, are given in the appendix for the face-centred cubic lattice. 
Loose-packed lattices can be treated by the methods of the following section and the 
triangular lattice will be treated elsewhere. 

When using the graphs tabulated by Domb (1960) we have to perform a decoration 
of the graphs. To  show this we represent the perturbation expansion by a hierarchy of 
summations : 

c exp(--PE) 
811 perturbations 

o f  !I sites on these sites 

In this context 'topologically distinct' means having distinct sets of E from the 2"arrange- 
ments. The contributions from h , ,  h ,  depend only upon the numbers N , ,  N ,  but the 
c1, c 2 ,  c3  factors depend upon the adjacency matrix F j  for the graph representing the 
perturbed sites, since 

E = c A i j .  
[(i.J):J'ij# 01 
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Since this summation must include all bonds between all pairs of perturbed sites the 
required graphs are section graphs or strong embeddings. E does not depend on how 
the graph is embedded. so instead of summing over all embeddings we multiply by the 
lattice constant : 

1 = 1 (lattice constant) 1 
dll  perturbations r f ronp 2" rrrdngements 

graphs 0 1  t, h sites 

The series expansion is thus obtained by decorating the vertices of the graphs tabulated 
by Domb (1960). If we want In A we replace the lattice constant by the term in the lattice 
constant that is linear in the number of sites. 

The fact that these multi-state models lead to graph decoration problems enables us 
to generalize the method of partial generating functions. The structure of the partial 
generating functions has mapped a lattice combinatorial problem on to an algebraic 
combinatorial problem. The general multi-state models require the same lattice constants 
as the spin * Ising model, so the generalization of the spin f Ising model becomes in 
principle a matter of algebraic transformation rather than being an essentially new 
combinatorial problem. In the following sections we present partial generating function 
expressions valid for arbitrary multi-state systems. 

4. The method of partial generating functions 

In Q 3 we used the symmetry property (19) to reduce the number of series coefficients that 
need be given. In this section the symmetry of the system under permutations of the 
arbitrary labels assigned to the perturbed states enables us to give expressions that can 
be applied to general multi-state models. 

The model is as described in the introduction but we only consider lattices that can 
be decomposed into two sublattices, A and B, so that any nearest-neighbour bond has 
one end on each sublattice. 

We consider a system of n + 1 states labelled 0 to n. The interaction energy between 
states of types i a n d j  is denoted by Jij and the field coupling to state i by hi with 

The expansions take the form 

m = ( m l ,  m2 . . . m,>. (23) 

The L,  are polynomials in {exp( - p J i j ) )  and mi is the number of sites in state i in the 
perturbations that contribute to L, .  

We now consider distinguishing between perturbations on each sublattice and put 

L,  = * 1 
m' 

where L,,,,, is the sum of perturbations with mi of type i on the A sublattice and mi of 
type i on the B sublattice. 
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We construct the partial generating functions 

where z is the coordination number of the (original) lattice. Defining the order of a 
vector m as Cm,, a knowledge of all F,,, up to order K in m will give all L,  up to order 
2K + 1 beczuse of the symmetry property 

Following the usual procedure in this method we express the partial generating functions 
as codes. The present notation is 

k ( l / a l b / c . .  .) = k ( A / a , . a , .  . . .a,/b,,, b 2 , .  b 2 2 ,  b,, . . . b n n / c l l , .  . . )  

The slashes are included since the vectors a, b. c will be of length n. i n ( n  + 1) etc which 
will be undetermined in the general form and truncated after all nonzero coefficients 
have been given. There are two important properties that enable us to quote codes 
applicable to general n and general J i j .  

(i) If m is of the form ( m l . .  . .mi, O,O,. . . O )  then F ,  for the (n + 1)-state model 
has the same code expansion as F,. for the ( i +  1)-state model with m' = ( m ,  , m2 . .  . m,). 
This is obvious when it is realized that a, is the number of A sites which are neighbours 
to only one B site of type i and bij  is the number of A sites between two B sites of types 
i and j. These definitions make no reference to  n, the number of possible perturbed states. 

(ii) An expansion 

F ,  = C K(A/a /b /c . .  .) 
codes 

is invariant under any permutation of the labels 1 to n. This means applying the same 
permutation to the labels of m. a, b. c,fi  etc and merely reflects the arbitrary nature of 
the labelling. 

The effect of these symmetry properties is that it is sufficient to consider only m 
vectors of the forms : 

(1) for 1st order 
(2). (1.1) for 2nd order 
(3). (2. 1). (1. 1. 1) for 3rd order 
(4). (3. 1). (2. 1. 1). (1. 1. 1. 1) for 4th order. 

ie no m with zero components needs to be considered. Also for vectors ( K ) .  F < K )  is 
obtained from F ,  for the spin '2 Ising model using the mapping of the codes : 

(A, E ,  p, y ,  . . .) + ( R / E ,  0 .  . ./p, 0 .  . ./y . . ./). 

These codes are obtained by considering graphs on what is called a shadow lattice. 
This has the sites of the B sublattice but its bonds connect any two B sites that have a 
common A neighbour on the original lattice. For any pair of B sites we define U' as 
the number of A sites neighbouring both B sites. The different possible w, values divide 
the shadow lattice bonds into equivalence classes denoted by type i. For any site we 
denote the number of type i bonds to the site by zi. Presented in table 1 is a list of lattices, 
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Table 1. Loose-packed lattices, their shadow lattices with bonds coordination numbers z, 
and the number of common neighbours on the original lattice, w , .  

Lattice 

hc 
s q  

sc 

bcc 

diam 
hsc 

h bcc 

- 
3 
4 

6 

8 

4 
8 

16 

Shadow 
lattice 

tri 

sq 

fcc 

sc 

fcc 
hfcc 

hsc 

Neighbours 

1st 
1st  
2nd 
1st 
2nd 
I S t  

2nd 
3rd 
1st 
I S t  

2nd 
1st 
2nd 
3rd 
4th 

6 I 
4 2 
4 I 
12 2 
6 I 
6 4 
12 2 
8 1 
12 1 
24 2 
8 1 
8 8 
24 4 
32 2 
16 1 

their shadows and the various w i r  z i  with the shadow lattice bonds described as lst, 2nd, 
etc neighbours on the shadow lattice. 

The notation for four-dimensional lattices follows that of Moore (1970) where. 
describing lattices in terms of typical nearest neighbours to the origin, we have 

hsc (1,O. 0, 0), hfcc (1, 1,0,0), hbcc (1, 1. 1. 1) 

We have not given any detailed proof of the form of the codes but the remarks at the 
end of the previous section indicate the line of argument. The connected graphs corres- 
pond to finite sums which are evaluated explicitly. Disconnected A sites are independent, 
so we can generalize the u'p in the spin Ising model to X i  pi exp( - pJoiz). The structure 
of the generating functions expressed in terms of codes. especially the form of the contrib- 
utions from disconnected A sites, gives lattice combinatorial factors in terms of algebraic 
combinatorial factors. This approach has been discussed by Enting (1974b). 

We can write 

F(,) = 1 -++ 1 zi/2\(2z/2z)+ 1 zi/2(2z - 2wi/2z - 2wi/wi). 

F(l.1) = ( - f + ...;;2) (2Z/2Z) + zi/2(2z - WJ2Z - 2Wi/O, Wi) .  
i 

In the appendix we also give F,, . F, for square. honeycomb, sc and diamond lattices. 
The general forms for theffunctions are 
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5. Specific models 

5.1.  Standard q-state Potts model 

While the possibility of having arbitrary fields (eg h , .  h ,  as described at the end of 6 2) 
would lead to complicated expressions, if we put hi = h, i = 1 . . . t t ,  n = q -  1, then 
with J i j  = J (  1 - 6,) (28) becomes 

f o  = 1 +(q-l)puu' (denotedf, by Enting 1974a. b);  (36) 

,1; = 1 +pu'-2+(q-2)pu'-' (denotedf,); (37) 

(23) becomes 

(34) becomes 

5, = 1 + ~ ~ = - 4 + ( ~ - 2 ) ~ ~ 2 - 2  (denotedf,) 

f;, = 1 + 2 p ~ ' - ~ + ( q - 3 ) p ~ ' - ~  
or 

(denoted.f,) ; (39) 

(35)  becomes 

f;,, = 1 +pu2-6+(q-2)puz-3 (denotedf,) (40) 

fiiJ = 1 +puZ-5+pU'-4+(q-3)pu=-3 (denoted ,f6) (41) 

f i jk  = 1 +3pu'-4+(q-4)pu'-3 (denoted f , ) .  (42) 

(f, to f ,  are for comparison with the notation of Enting (1974a, b) which will not be used 
in the following work. Enting (1974b) gives f6 incorrectly.) 

It is possible to combine the expressions to obtain the F ,  given by Enting (1974a. b). 
The procedure indicates how code expansions can be used for more general models. 

(a )  F o  = Info 

(b )  

since by (37) all thefi are equal. 

((.) 

F ,  = F(1.0 ,... 0 ) + ~ ~ 0 , 1 , 0 . . 0 ) +  " ' F < O  ,..., 1 )  = (q-l)F<l) 

F2 = F < 2 , 0 , 0  ... ) + F ( O  .*... 0 )  +F<O,  . . 2 )  + F ( I , l , O  . O )  +F<l,O,l, .) + F ( O , O  ,... 1 , l )  

= ( 4 -  W<,)+&f- l)(q-2)F<l , l ) .  
Similarly 

(4 
Another simplification that arises in this model is for F( l , , , , ,  l ) .  The only frj.J;Jk..f;Jkf 
that occur are for i, j. k ,  1 all different. so the code expansions for F < , , , ,  ,) are the spin 
5 Ising model codes interpreted by 

F3 = ( 4  - 1 F < 3 )  +%I - 1 )(4 - 2)(q - W ( 2 . 1 )  +& - 1)(q - 2)(q - 3)F< 1.1.1) ' 

(;., X ,  p, 7 . . .) = .f; 1 + p u 2 -  +(4 - 2)pu;- l y (  1 + 2pu2 - 

+(~-3)pu'-2)P(l+3pu=-4+(q-44)pu'-3)' 
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5.2. Spin s I s ing  model 

n = 2s 

Ji, = - J ( i  - s/2)G - 4 2 )  + Js2/4 

P j  = P’ 

This last property shows that after expanding the partial generating functions we 
need to group somewhat differently from the manner implied by equation (24). The 
appropriate combined generating functions are 

F l  = F ( 1 )  

F 2  = F ( 2 . O ) + F / 0 . 1 )  

F 3  = ‘ ~ 3 ) + ~ ~ 1 , 1 ) + ~ ~ 0 , 0 , 1 ~  

F4 = F,4) + F , 2 , 1 )  + F ( 0 , 2 )  + F ( l . O , l  > + F ( O , O . O , l )  

F 5  ‘ ( 5 )  +‘(1.2) fF (3 ,1 )+F(2 .0 ,1 )+  ‘ ( 0 . 1 . 1 )  f F ( l , O , O , l > +  F < O , O . O . O . l ) ’  

In terms of the order of polynomials that are yielded by a given order of generating 
function this procedure is a slight improvement on that described by Sykes and Gaunt 
(1973). Fox and Gaunt (1972) treated the diamond and honeycomb lattices by using the 
data given by Sykes er a1 (1965) for up to five perturbed sites on the shadow lattice. 
These gave 11 high-field polynomials as expected from considering up to five perturbed 
shadow lattice sites, but Fox and Gaunt added the 12th polynomial by noting that 
the only contributions at order 12 that correspond to 12 perturbed sites will be those 
with all sites in state 1. The graphs are thus the same as for the spin 9 Ising model from 
which series the additional terms may be obtained. 

In the present formalism we note that the only contribution to F ,  that involves 
six perturbed shadow sites is F ( 6 )  which is the spin Ising model code. This will enable 
13 high-field polynomials to be obtained from explicit considerations of five perturbed 
shadow sites. The present method gives the additional polynomial because the informa- 
tion from the spin 3 Ising model is introduced at the level of the partial generating 
functions rather than at the level of the final L,  polynomials. 

5.3. A two-layer spin 

The system considered is a spin Ising model on two coupled square lattices (ie two 
planes of a simple cubic lattice). The interactions are ,I,  in the upper plane, J2 in the 
lower plane. The J ,  = J ,  = J , ,  case was investigated by Ballentine (1964) using high- 
temperature expansions. Investigations by Oitmaa and Enting (1975) indicate that 
the general case has a very complicated behaviour. 

We represent this as a four-state model on a square lattice in order to take advantage 
of the available combinatorial information for this lattice. 

We denote the states and their fields as follows. 

Ising model 

0 + (+, +) 

1 -+(+. - )  

2 + (-.  +) 

3 = (- .  - )  

h ,  = H 2 + 2 J , ,  

h2 = H , + 2 J 1 2  

h3 = H , + H , .  
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The energies are 

J i o  = 252, J,, = 25, .  J 3 ,  = 23,  + 2 J 2 ,  J , ,  = 2 J 1 + 2 J 2 .  

J 1 3  = 251, 3 2 3  = 252, Jii = 0 .  

Also any of the expansions will be invariant under the transformation state 1 + state 2, 
state 2 +state 1. J ,  + 5,. 3, + J , ,  H ,  + H,, H, + H,. 

5.4. Generalized Ashkin-Teller niodel 

This is again a two-layer model. but the two layers have equal interactions and are 
coupled by a four-spin interaction. The work of Ditzian (1972) indicates that the 
exponents may be the same as for the eight-vertex model. Since this model can be 
defined with two fields, H and E ,  as can the eight-vertex model (Barber and Baxter 
1973), it may be possible to test the conjectures concerning the exponent p, that were 
made by Enting and Gaunt (1974). Again, mapping the two-layer system on to a 
four-state system (which was the original form given by Ashkin and Teller 1943). we 
have : 

i t ,  = H + 2 E  
h, = H $ 2 E  
h ,  = 2H 
JIo = J20 = J13 = J23 = 25 
J , ,  = J30 = 45 
Jii = 0.  

5.5. A special case 

We mention briefly a special class of systems, those in which the lowest energy perturba- 
tions can be into either of two equivalent states. Important examples are the planar 
Potts models (Potts 1952) in which a two-dimensional vector can take up one of q 
symmetric directions. The interaction is proportional to the scalar product of pairs of 
neighbour vectors. If the ordering field is in one of the allowed directions then this 
defines the lowest energy state (denoted 0). The smallest perturbations which give the 
lowest order L, will be into the two equivalent states denoted by 1 and q -  1. The 
possible perturbations into these sites give contributions to In 2 equivalent to those 
of the three-state Potts model. When using partial generating functions a major contri- 
bution comes from terms in which all perturbed sites on one sublattice are in states 1 
and q -  1. Summing over all perturbations on the other sublattice means that we can 
obtain most of the low-order series terms by reinterpreting the three-state Potts model 
generating functions given by Enting (1974a). Polynomials L ,  to L,  have been obtained 
for the six-state planar Potts model. After using the three-state codes only seven 
additional terms in the generating function need be calculated separately. The details 
of these calculations will be given elsewhere. 

6. Conclusions 

The formalism presented in 6 4 shows how the method of partial generating functions 
can be extended to a far more general class of lattice models than has hitherto been 
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considered. Sykes and Gaunt (1973) gave the basic principles but we feel that the 
important result is that i t  is possible to express the combinatorial data in a form that is 
common to all models. Previous work on the spin 1 Ising model (Fox and Gaunt 
1972) and on the Potts model (Enting 1974a) has expressed the code expansions in a 
form that is applicable only to the model considered, in spite of the fact that these two 
problems require essentially the same combinatorial information. 

In spite of the potential complication of the general form, when particular cases 
are considered as in $5. any inherent symmetry can be used at a very early stage to 
simplify the problem. It  is to be hoped that with the calculation of additional code 
expansions for F, .  the methods given here will prove useful in the derivation of series 
expansions. 
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Appendix 

A.I .  High-Jeld polynomials for three-state model with general linkage rule 

L , ,  = 1 2 ~ - 1 3  

L I Z  = 2 4 ~ ~ ’  + 8 4 ~ ~  - 1201. + 4 2 ~ *  - 2 4 0 ~  + 21 1 

L, ,  = 8 ~ ~ ~ ~ + 4 8 c ’ ~ ” +  l 2 O ~ ~ ~ - 2 O O t ~ + 4 8 t . ’ ~ ~ + 2 5 2 ~ ~ ~ ~ + 6 9 6 ~ ’ ~ 1 3 -  1122c2 

+ l 2 O u ~ ~ - 3 6 c w ~  -4368cw1+4644c+44w3- 1122w2+4644w-3777 

L 2 ,  = ~ ~ u c w ~ + ~ ~ u c w ~ ~  +252ucw2 +564uvw- 1062uc+(ufc)(24w4+240w3 - 1 8 6 ~ ’ ~  

- 2 2 4 4 ~ ’ +  2322) + 6~~ + 5 6 4 ~ ~  - 4 3 6 8 ~ ’  + 9 2 8 8 ~  - 56654 

L14 = 2 4 ~ ~ ~ . ~ + 2 4 t . ~ ~ - 5 6 ~ ~ + 7 2 ~ ~ ~ ~ +  1 4 4 ~ ~ ~ ’ + 4 0 8 ~ ~ ~ - 7 2 0 ~ ~  + 5 4 ~ ~ ~ , . ~ + 2 1 6 ~ ~ ~ ~  

+ 9 3 6 c 4 d  +2184c4w- 3 8 8 2 ~ ~ + 9 6 ~ ~ ~ , ~ + 7 1 2 t . ~ ~ ~ +  1 8 4 8 ~ ~ ~ ’ - 9 2 4 t . ~ ~ ~  

- 2 2 3 6 ~ ~ + 2 4 0 ~ ~ ~ ~ + 5 5 2 ~ ~ ~ ~ - 6 5 9 4 1 : ~ ~ ~  - 6 2 1 6 0 ~ ’ ~ +  7 4 5 7 4 ~ ’ + 9 6 ~ ~ 1 ~  

- 2 9 6 4 ~ ~ ~  - 1 5 6 3 6 ~ ~ ’  + 1 4 6 5 9 2 ~ ~  - 137376~ + 9w4 - 1 4 4 8 ~ 1 ~  + 25284~’  

- 91 5 8 4 ~  + 71 516 

L23 = 96uu3w4+ 1 6 8 u ~ ~ w ~ + 4 0 8 u u ~ ~ ~ ~  +792u03w- 1728uu3+ 1 2 O ~ ~ ~ ~ ~ + 2 8 8 ~ c ~ w ~  

+ 1 0 8 0 ~ ~ ’ ~ ~ ~  +2184ucZw2 +4632uc2w-9732uc’ +24ucw6 +216ucw5 

+ 1 0 3 2 ~ ~ ~ ; ~ + 9 3 6 ~ ~ ~ ~  - 7 6 6 8 ~ ~ ~ ~  - 3 8 3 5 2 ~ ~ ~ + 4 8 0 1 2 ~ ~ +  1 6 8 ~ ~ ’  

+ 4 8 ~ ~ ~  - 6 7 2 0 ~ ~ ~  - 8 0 4 ~ ~ ’  + 5 0 5 6 8 ~ ~  - 4 5 7 9 2 ~  +48t13w5 + 1 4 4 ~ ~ ~ ~  

+ 3 5 2 t . 3 ~ 3 - 7 6 8 ~ 3 ~ 2 - 3 7 9 2 ~ 3 ~ ~ + 4 3 2 8 ~ 3 +  12uZw6+ 1 4 4 ~ ’ ~ ’ +  1 1 . 5 2 ~ ’ ~ ~  

+ 1 8 2 4 ~ ’ ~ ~  - 3 5 0 4 ~ ’ ~ ’  - 2 3 2 3 2 ~ ~ ~  + 25284~’ + 2 8 8 0 ~ ~  + 2 8 5 6 ~ ~ ~  

- 1 2 4 8 0 ~ ~ ~  - 55368~~1’ + 1 9 7 1 6 0 ~ ~  - 137376~ +48w5 + 2 5 5 0 ~ ~  

- 3 9 8 0 0 ~ ~  + 171876~’ - 2 7 4 7 5 2 ~ +  143032. 
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A.2. Expansions for F, of third order 

Honeycomb 

F(2,1)  = 3(7/4.2/0/0. 1)+3(6/2. 1/1.2)+ 18(7/3.2/1. 1)+9(7/4. 1;O. 2)-30(8;’4. 311) 

- 60(8/5.2/0. 1) + 58(9/6. 3) 

F(1.1.1) = 6(7/2,2,2/0/0,0,0,0,0, 1)+(6/12 1, 1/09 190, 1, 1)+18(7/1,2,2/0, 1,0, 1) 

+ 18(7/’2. 1.210. 1.0,O. 1)+ 18(7/2.2. 1/0.0.0. 1.  1)-60(8/2.2. 310. 1) 

-60(8/2.3.2/0.0.0. 1)-60(8/3,2.2/0.0.0.0, 1)+116(9/3, 3. 3) 

Square 

F<2,1) = 2(8/4,0/0,4)+4(8/2,2/2,2)+4(8/4, 1/0,2/0, 1)+8(8/3,2/1, 1/0, 1)+8(9/3,3/2, 1 )  

+8(9,15. 110. 3)+8(9/4. 2/1. 2)+6(10/6. 210. 2)+ 12(10/5. 3/1. 1 )  

- 24( 1014.412) - 48( 1016. 210.2) - 28( 11/6,4/1)- 56( 11/7,3/0, 1 ) 

+ 97( 12,/4.4.4) 

F ( l , l . l )  = 4(8/0.2.2!0.2.0. 2)+4(8/2.0. 210. 2.0.0. 2)+4(8/2. 2,/0.0.0. 2. 2) 

+8(8,/l. 2. 2,10. 1.0. l/O.O.O.O.O. 1)+8(8/2. 1. 2/0. 1.0.0. 1,/0.0.0.0.0. 1 )  

+8(812.2. 1/0.0.0. 1. 1/0.0.0.0.0. 1)+8(9/3.2. 1/0.0. 0. 1.2) 

+8(913. 1.210. 1.0.0. 2)+8(9/1. 3.2/0. 1.0.2)+8(9/1.2, 310.2.0. 1) 

+8(9/2. 3. 110.0.0.2. 1)+8(9/2. 1. 3/0.2.0,0. 1)+12(10/2. 3. 3/0. 1.0. 1) 

+ 12( 10/3. 2. 310. 1 , O .  0. 1) + 12( 10/3. 3. 210. 0, 0, 1, 1) - 48( 10/2,2,4/0,2) 

-48(10/2.4.2,‘0.0.0.2)-48(10/4.2.2/0.0.0.0.2)-56(11/3. 3.410. 1) 

-56( 11/3,4,3/0,0,0, 1)- 56( 11/4,3,3/0,0,0,0, 1)+ 194( 12/4,4,4). 

Diamond 

Fc2,1)  = 12(10/6. 3,/0/0. 1 )+  12(9/4. 211. 2)+84(10/5, 311. 1)+42(10/6. 210. 2) 

-120(11/6,4/1)-240(11/7,3/0, 1)+211(12/8,4) 

~ < ~ , ~ , ~ >  = 24(10/3. 3. 3/0/0.0.0.0.0. 1)+24(9/2,2.2/0. 1.0. 1, l)+84(10/2. 3.3,/0. 1.0. 1) 

+84(10/3.2.3/0. 1.0.0. 1)+84(10/3.3,2/0.0.0. 1. 1)-240(11’3. 3.4/0. 1 )  

-240(11/3,4,3/0,0,0, 1)-240(11/4,3,3/0,0,0,0, 1)+422(12/4,4,4). 

Simple cubic 

F(2q1) = 24(13/6. 3)’l. 210. 1)+48(15/7. 5’2. 1)+48(15/8.4/1. 2)+48(15’9. 3 0. 3) 

+ 12(14/8, 3/0.2/0. 1)+24(14/7.4/1, 1/0. 1 ) +  15(16/10.4/0, 2) 

+30(16/9,5/1. 1)- 168(16/8,6/2)-336(16/10.4/0. 2)-96(17/10.6/1) 

- 192( 17/11,5/0, 1) + 454(18/12,6) + 30(14/8,2/0,4) + 60( 14/6,4/2,2) 
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F‘<l,l,l) = 48(13/3. 3. 3/0. 1.0. 1. 1/0.0. 0.0.0. 1)+48(15/5.4. 3/0,0,0, 1,2) 

+ 48( 15/5. 3.410. 1.0.0. 2) + 48( 1514. 5. 3/0,0,0,0,0, 1) 

+ 48( 15/4. 3. 5/0.2.0.0. 1) + 48( 15/3.4. 5/0. 2.0. 1) + 48( 151 3, 5.4/0. 1.  0. 2) 

+ 24( 14 3.5, 5i0, 1,0, 1/0,0,0,0,0, 1) 

+24(14/5. 3, 5/0. 1.0.0. 1/0.0.0,0.0. 1) 

+24(14/5,5,3/0,0,0, 1, 1/0,0,0,0,0, 1)+30(16/5,4,5/0, 1,0,0, 1) 

+30(16/5. 5.4/0.0.0. 1. 1)+30(16/4. 5. 5/0. 1.0. 1) 

-336(16/6.4.4/0,0,0.0. 2)-336(16/4.6,4/0.0.U, 2)-336(16,4.4. 610.2) 

- 192(17/5. 5.6/0. 1)- 192(17,’5.6. 5/0.0.0. 1)- 192(17/6. 5. 5/0.0.0.0. 1) 

+ 908( W, 6,6) + 60( 14/4,4,2/0,0,0,2,2) + 60( 14/4,2,4/0,2,0,0,2) 

+ 60( 14/2,4,4/0,2,0,2). 
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